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1 INTRODUCTION  

At Technical University of Ilmenau a Peristaltically 
Actuated Device for Minimal Invasive Surgery 
(PADeMIS) is being developed. The device will 
move actively like an earthworm and carries a 
hollow tube behind its back. The tube and the active 
part of the device are providing a channel to insert 
endoscopic tools towards the invasive location of 
surgery. The first application of PADeMIS is the 
minimal invasive spine surgery. It will enter the 
spinal canal at os sacrum and moves cranially be-
tween the vertebral bodies and the dura mater spi-
nalis. Therefore, PADeMIS’ design depends on the 
properties of the spinal canal. Thus, the outer diame-
ter of PADeMIS must be alterable from 4 to 10 mm 

 
 

 
 
Figure 1. Schematic view of PADeMIS with serial arrangement 
of two filled and four unfilled segments. 

 
and an inner diameter of at least 2 mm has to be 
remained in order to insert the endoscopic instru-
ments. Due to the general conditions PADeMIS will 
be produced from silicone rubber. It will consist of 
“worm”- segments, each made of at least two layers 
of silicone enclosing pads. The pads of serially 
arranged segments will be filled periodically with 
fluid, which is resulting in a peristaltic locomotion 
(see Figure 1). The design of a single segment is 
being optimized by Finite Element Analysis (FEA) 
(see Figure 2) for which a constitutive law as input 

 
 

 
Figure 2. FEA of the deformation of one segment of 
PADEMIS. 

 

ABSTRACT: At Technical University of Ilmenau a Peristaltically Actuated Device for Minimal Invasive 
Surgery (PADeMIS) is being developed. PADeMIS will be produced from silicone rubber and its design is 
being optimized by Finite Element Analysis (FEA). Thus, a constitutive law of silicone rubber is required. 
When an element of PADeMIS is hydraulically actuated the resulting deformation corresponds approximately 
to a biaxial tension. On the other hand, uniaxial tension tests are generally easier to perform than biaxial 
tension tests. Therefore, in this paper the validity of a Mooney- Rivlin law, adapted to one loading case and 
describing deformations during other loading cases is investigated. Furthermore, the results of fitting the 
parameters of the Mooney- Rivlin law to the data of equi- biaxial and uniaxial tension tests of silicone rubber 
simultaneously are presented. 



property is necessary. The loading case of the de-
formed pads will be approximately biaxial. On the 
other hand, uniaxial tension tests are generally much 
easier to perform. However, in order to gain permis-
sion for medical use, many long-term experiments 
that are examining the mechanical fatigue and stress- 
softening (Mullins 1969) must be carried out. 

The aim of this paper is to study whether a consti-
tutive law (Mooney- Rivlin law) fitted to uniaxial 
tension tests can be used to describe biaxial tests. Or 
more general, whether fitting of a constitutive law to 
one specified loading case leads to a confidential 
prediction of deformations under other loading 
conditions. Furthermore a simultaneous fit of uniax-
ial and equi- biaxial experimental data is presented.  

2 CONSTITUTIVE LAW - THEORY 

To perform FEA simulations of the design of 
PADeMIS a constitutive law of the silicone rubber is 
needed as input quantity. A well known constitutive 
law for rubber like materials is the extended 
Mooney- Rivlin law, which is based on polynomials 
(Mooney 1940; Rivlin 1984): 
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with W = strain energy density, I1, I2, I3 = invariants 
of the deformation tensor, κ  = bulk modulus, 
m = order of model and aik = the Mooney- Rivlin 
constants (q = number of parameters) describing the 
material. The invariants for incompressible material 
– a good assumption for silicone rubber – can be 
expressed as 
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with V = deformed volume, V0 = undeformed vol-
ume and λi = principal stretches 
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with li li,0 = deformed respectively undeformed 
length in direction i. 

 
 
 
 
 
 

The principal true stresses σi can be calculated from 
the strain energy density by 
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with the hydrostatic pressure p. 

2.1 Equi- biaxial tension 
For equi- biaxial stress in λ1 and λ2 and assuming 
I3 = 1 the stretches in incompressible material can be 
expressed as 
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The surface perpendicular to direction λ3 is stress- 
free. The hydrostatic pressure can be calculated by 
inserting Equation 4 in σ3 = 0. Thus, from Equa-
tion 4 the stress σ1,bi can be calculated as 
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Inserting the derivations of Equation 1 the stress can 
be expressed as 
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In the linear terms (m = 1 in Equation 1) the a01 term 
dominates for λ1 > 1 the a10 term, in the second 
order terms the a02 term dominates and so on for 
higher orders of m. 

For this reason, the determination of the parame-
ters aik while fitting the experimental equi- biaxial 
data is expected to be considerably more accurate 
for the terms belonging to the invariant I2 (a0k) as for 
the terms belonging to the invariant I1 (ai0). 



2.2 Uniaxial tension  
For the uniaxial stress in λ1 the stretches in incom-
pressible material can be expressed as 
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The free surfaces perpendicular to directions λ2 and 
λ3 are stress- free. The hydrostatic pressure can be 
calculated by inserting Equation 4 in σ3 = 0. Thus, 
from Equation 4 the principal stress σ1,uni can be 
calculated. 
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Inserting the derivations of Equation 1 the stress can 
be expressed as 
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For uniaxial tension the term a10 dominates for λ1 > 
1 the a01 term in the linear terms (m = 1 in Equa-
tion 1), in the second order terms the a20 term domi-
nates and so on for higher orders of m. 

For uniaxial tension, the determination of the pa-
rameters aik by means of fitting the experimental 
data should be substantially more accurate for the 
terms belonging to the invariant I1 (parameters ai0) 
than for the terms concerning the invariant I2 (pa-
rameters a0k). 

2.3 Comparison of uniaxial and equi- biaxial 
stresses 

Comparing Equation 7 with Equation 10 the amount 
of stress due to the terms concerning the invariant I1 
is nearly equal, but the amount of stress due the 
invariant I2 and the mixed terms are quite different. 

So constitutive laws evaluated through fitting 
uniaxial tension experiments are expected to be 
inaccurate in the description of other stress cases 
(equi- biaxial stress or even uniaxial compression, 
which is equivalent to equi- biaxial stress). 
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Figure 3. Top view of an undeformed equi- biaxial test sample. 
The positions of the crossing of the 6 lines will be measured, 
for example points C, A, D for line a. 

3 EXPERIMENTAL SETUP 

The segments of PADeMIS will be filled periodi-
cally with fluid to produce the locomotion. This 
results in nearly equi- biaxial stress in the silicone 
membrane (compare Figure 2). Therefore the consti-
tutive law for the FEA optimization of the design 
should be evaluated by equi- biaxial tension tests. 
The disadvantages of the equi- biaxial tension tests 
are its intense time and manpower consumption. 
Hence, for longtime stability tests and investigations 
of stress softening (Mullins 1969) uniaxial tension 
tests are more comfortable. 

3.1 Silicone rubber test samples 
The samples are being produced from the liquid 
injection molding silicone elastomer MED-49xx 
from NUSIL® distributed by Polytec®. xx indicates 
the shore hardness of the silicone rubber adjusted 
with silica filler by the manufacturer. In this paper 
results from experiments performed with MED-4930 
and MED-4950 are used. The two components are 
mixed in a 25% Hexane solution steadily, are casted 
in a mold of size 120 mm × 120 mm and are de-
gassed for more than 30 hours. Then, the silicone 
rubber will be cured. The thickness of the sheet is 
measured with a layer thickness measurement Dual-
scope made by Fischer®. The used layers had a 
thickness in the range from 500 - 900 µm and the 
standard deviation was less then 10%. 

3.2  Equi- biaxial tension test 
The equi- biaxial stress can be measured by inflating 
a thin silicon sheet as described by Rivlin and Saun-
ders (Rivlin 1951). The silicon test sample will be 
marked with 6 lines as shown in Figure 3 and fixed 
to a aluminum plate by a aluminum ring of diameter 
60 mm (see Figure 4). In the middle of the alumi-
num plate a pressure supply and a connection for a 
pressure sensor are included. Then the aluminum 
plate with the silicone sheet is mounted at a three 
axes positioning unit made by ISEL®. 



On the vertical axes a tip is fixed (see Figure 4). 
Aligning this tip with the crossings of the marker 
lines the positions of the crossings can be measured. 

 
 

 
Figure 4. Equi- biaxial tension test stand  
 

Inflating the sheet with pressure P causes a de-
formation. At the top of the bubble the deformation 
is assumed to be spherical with radius r. The pres-
sure P produces a radial tension T: 

r
TP 2

=  (11)

The radial tension is defined as 

dlT bi∫= ,1σ  (12)

Assuming homogeneous stress in the sheet with 
deformed thickness l3 Equation 12 can be simplified 
to 

r
P bi 3,1 l2σ
=  (13)

The deformed length l3 can be expressed by the 
undeformed length l3,0 and the stretch λ1: 
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Thus, the stress in the sample can be expressed as 
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As shown by Rivlin and Saunders (Rivlin 1951) the 
radius r can be calculated from three points by the 
following geometrical considerations (nomenclature 
can be seen in Figure 5). 
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Inserting Equation 16 into Equation 17 and trans-
forming it yields to 
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Figure 5. Side view of the line a indicated at Figure 3 of the 
deformed test sample. From the positions of the points A, C, D 
the stretch λ and the radius r will be calculated (see (Rivlin 
1951)). 

 
 

The stretch can then be expressed by 

0,1
1 l

rΘ
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The angle Θ can be calculated by transforming 
Equation 17 
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The stress σ1,bi for each sample will be calculated 
by Equation 15 for each line (see Figure 3). Then the 
mean of the stresses and stretches for the three 
parallel lines are calculated. The stress σ2,bi and the 
stretch λ2 are calculated identically and are plotted 
separately. The difference between the stresses and 
stretches in both directions is an indicator for the 
inhomogeneity of the sample. The errors of the 
stretches and stresses are calculated by error propa-
gation. 
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Figure 6. Experimental equi- biaxial tension test for silicone 
rubber MED-4930 and MED-4950. 
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Figure 7. Experimental data and fits of the uniaxial tension 
tests for different samples of silicone rubber MED-4950. 

 
 

In Figure 6 the measured stress- stretch depend-
ency for equi- biaxial tension of silicone rubber 
MED-4930, MED-4950 and the fitted stress- stretch 
relation are shown. For details of the fitting process 
refer to the appendix. 

As it can be seen, the stresses and stretches in di-
rection 1 and 2 are identical within a 10% margin. 
Thus, the reproductively of measurements with 
different samples is very good. The experimental 
data can be well approximated by fitting Equation 7. 
The values of the fitted parameters can be seen in 
Table 1. There was no acceptable fitting result with 
parameters a20 ≠ 0. 

3.3 Uniaxial tension test 

For the uniaxial tension test the silicone rubber sheet 
is cut in 80 mm × 5 mm long pieces. A 20 mm long 
region is marked around the center. The sample is 
fixed in clamps and attached to the test stand. Then, 

Table 1. Mooney- Rivlin parameters of silicone rubber  MED-
4930 and MED-4950. Not listed parameters are equal zero. Fit 
xplanation of χ2 and ν see appendix. e  

Parameters a10
* δa10

* a01
* δa01

* a20
* δa20

* χ2 ν 
         
MED-4950      
Biaxial fit 503 12 13 1  73 46
Uniaxial fit 1 497 6   0.9 0.2 718 217
Uniaxial fit 2 484 19 134 27 0.5 0.3 1003 216
Simultaneous
bi- and 
uniaxial fit 

493 5 10 1 0.9 0.2 800 264

    
MED-4930    
Biaxial fit 144 3 15 0.5  283 58
Uniaxial fit 245 6   2 0.1 87 432
Simultaneous
bi- and 
uniaxial fit  

192 2 1.3 0.4 3 0.05 544 492

* [kPa]    
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Figure 8. Experimental data and fits of the uniaxial tension 
tests for different samples of silicone rubber MED-4930. 

 
 

the sample is loaded with different weights and the 
resulting length is measured. 

The principal stress σ1,uni in the sample can be 
calculated by 

 

1
0,2323

,1 λσ
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with F = force due to weight, A23,0, A23 = unde-
formed respectively deformed area perpendicular to 
direction λ1. 

Estimation of the errors and fitting process are 
equivalent to the equi- biaxial experiments. 

The experimental data of the uniaxial tension 
tests of silicone rubber MED-4950 and MED-4930 
is shown in Figure 7 and Figure 8 respectively. For 
uniaxial tension of MED-4950 two fit curves are 
shown. For both materials the fitted stress- stretch 
characteristic closely matches the tensile strength 
specified in the data sheet of the manufacturer. 



With regard to χ2 and δa01 / a01 and δa20 / a20 fit 2 
of material MED-4950 is much worse as fit 1. For 
both materials values of the parameters a01 could not 
be found. Thus, the assumption stated in the last 
paragraph chapter 2.2 – fitting of uniaxial tension 
tests results to uncertainties for the parameters a0k – 
seems to be validated. The values of the fitted pa-
rameters can be seen Table 1. 

3.4 Optimization of the constitutive law to equi- 
biaxial and uniaxial tension tests 

The fitted constitutive laws are used to calculate a 
stress- stretch characteristic to predict the other 
loading case. The calculated stress- stretch relations 
for biaxial and uniaxial loading for silicone rubber 
MED-4930 and MED-4950 are shown in Figure 9 
and Figure 10 respectively. In the MED-4950 biaxial 
loading case the errors between the stress- stretch 
characteristics calculated from the parameters of 
fit 2 from the uniaxial data and the experimental data 
are enormous. Also, a constitutive law fitted to the 
biaxial loading case cannot estimate the MED-4930 
uniaxial data. From Table 1 it can be seen that a 
constitutive law for the silicone rubbers MED-4950 
and MED-4930 needs (at least) the parameters a10, 
a01 and a20, but fits to one loading case give no 
satisfying results for all three parameters. 

 
 
 

1 2 3 4 5 6 7 8 9

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

80

Silicone rubber MED-4950: uniaxial tension

 Uniaxial test data
 Fit to uni- & biaxial data
 Prediction from fit biaxial data
 Fit 1 to uniaxial data
 Fit 2 to uniaxial data
 tensile strength (data sheet)

 

tru
e 

st
re

ss
   

 [M
Pa

]

stretch

Silicone rubber MED-4950
biaxial tension

 Equi- biaxial test data
 Fit to uni- & biaxial data
 Fit to biaxial data
 Prediction from fit 1 uniaxial data
 Prediction from fit 2 uniaxial data

 

tru
e 

st
re

ss
   

 [M
Pa

]

 
Figure 9. Fitted constitutive law for equi- biaxial and uniaxial 
tension tests of silicone rubber MED-4950. 

 

Thus, the LabVIEWTM Levenberg- Marquardt χ2 
minimization subroutine is modified to optimize the 
constitutive law to equi- biaxial and uniaxial data 
simultaneously: 

222
biuni χχχ +=  (22)

χ2
uni = χ2 of the uniaxial fitting procedure and χ2

bi = 
χ2 of the biaxial fitting procedure (calculated by 
Equation 23 shown in the Appendix). 

The stress- stretch relations fitted to biaxial and 
uniaxial simultaneously are shown in Figure 9 and 
Figure 10 respectively, too. Thus, it has been shown 
that the Mooney- Rivlin approach of the constitutive 
law is able to describe the biaxial and uniaxial 
loading case simultaneously. The parameters aik of 
silicone rubber MED-4930 and MED-4950 are listed 
in Table 1. Via the simultaneous fit it is possible to 
find the three parameters a10, a01, a20 with small 
errors and acceptable χ2. The validity of the result-
ing constitutive law for other loading cases can be 
estimated by calculating and transforming the stress 
corresponding to Equation 7 and Equation 10 and 
considering the orders of λ1 for each parameter. 
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Figure 10. Fitted constitutive law for equi- biaxial and uniaxial 
tension tests of silicone rubber MED-4930. 



4 CONCLUSIONS 

On the one hand side, it is shown that fitting experi-
mental data of one loading case can lead to wrong 
parameters in the Mooney- Rivlin law and therefore 
to wrong prediction for other loading cases. On the 
other hand, for silicone rubber a set of Mooney- 
Rivlin parameters describing uniaxial and equi- 
biaxial experiments simultaneously were found. 

For FEA simulation the constitutive law, which is 
used as input, should be determined by a similar 
loading case to the one the simulated object will 
undergo. The other possibility is determining the 
constitutive law with several experiments of differ-
ent loading cases. 

In the future, models using orthogonal invariants 
(e.g. (Criscione 2000)) and models dealing with 
stress softening (e.g. (Ogden 1999)will be tested for 
their adaptability for describing more then one 
loading case simultaneously. 
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6 APPENDIX 

The experimental data are fitted with a LabVIEWTM 
program. A modified version of the LabVIEWTM 
Levenberg- Marquardt χ2 minimization subroutine 
from National Instruments Corporation is used (For 
programming Levenberg- Marquardt method see i.e. 
(Press 2002)). 

The property χ2 describing the distance between 
the fitted curve and the experimental value is de-
fined as 

( )
∑ 


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
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measikfit a 2
2 ,

δσ
σλσ

χ  (23)

σfit(λ,aik) = calculated constitutive law (Equation 7 
and Equation 10 respectively), σmeas = stress from 
measured data (Equation 15 and Equation 21 respec-
tively), δσmeas = experimental errors and n number 
of experimental data. In addition σfit(λ,aik + δaik) 
and σfit(λ,aik - δaik) are calculated to get an impres-
sion of the errors of the fitting process. 

To calculate the errors δaik of the parameters aik a 
vector c with elements cj has to be calculated. 
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The dimension of vector c responds to o, the number 
of parameters aik. 
The convergence matrix C (dimension q × q) is 
defined as  

1

2
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n T
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ccC  (25)

The error δaik of the j-th parameter is related to the 
diagonal elements of the Matrix C by 

( ) jjjik Ca =∂  (26)

The non- diagonal Cjl elements are the covariances 
between the j-th and l-th parameters. 

Besides, the degree of freedom ν of the fit is 
specified as 

qn −=ν  (27)
A good fit should result in χ2 ≈ ν. 

The fitting of the experimental data is performed 
by optimizing the parameters belonging to m = 1 
(Equation 1) (The other parameters fixed to zero). 
Then the parameters belonging to m = 2 are included 
in the optimization subsequently. Parameters with 
errors larger then the value of the parameter are 
fixed to zero and the optimization was repeated. 
Parameters belonging to m > 2 never yield to better 
fit results. 
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